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ABSTRACT 

It is well-known tha t  Teichmfiller discs tha t  pass through "integer points" 

of the moduli space of abelian differentials are very special: they are 
closed complex geodesics. However, the structure of these special Teich- 
miiller discs is mostly unexplored: their number,  genus, area, cusps, etc. 

We prove tha t  in genus two all t ranslat ion surfaces in 7/(2) tiled by 

a prime number  n > 3 of squares fall into exactly two Teichmiiller discs, 

only one of them with elliptic points, and tha t  the genus of these discs 

has a cubic growth rate in n. 
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1. In t roduc t ion  

In his fundamental paper of 1989, Veech studied the finite-volume Teichmfiller 

discs. Translation surfaces with such discs, called Veech surfaces, enjoy very 

interesting dynamical properties: their directional flows are either completely 

periodic or uniquely ergodic. An abundant literature exists on Veech surfaces: 

Veech [Ve89, Ve92], Gutkin-Judge [GuJul, GuJu2], Vorobets [Vo], Ward [Wa], 

Kenyon-Smillie [KeSm], Hubert-Schmidt [HuSc00, HuSc01], Gutkin-Hubert- 

Schmidt [GuHuSc], Calta [Ca], McMullen [Mc],.... 

The simplest examples of Veech surfaces are translation covers of the torus 

(ramified over a single point), called square4iled surfaces. They are those trans- 

lation surfaces whose stabilizer in SL(2, R) is arithmetic (commensurable with 

SL(2, Z)), by a theorem of Gutkin and Judge. These surfaces (and many more!) 

were introduced by Thurston [Th] and studied on the dynamical aspect by 

Gutkin [Gu], Veech [Ve87] and Gutkin-Judge [GuJul, GuJu2]. Square-tiled 

surfaces can be viewed as the "integer points" of the moduli spaces of holo- 

morphic 1-forms. The asymptotic number of integer points in a large ball was 

used by Zorich [Zo] and Eskin-Okounkov [EsOk] to compute volumes of strata 

of abelian differentials. 

It was known for years that Teichmiiller discs passing through these integer 

points in the moduli space are very special: they are closed (complex) geodesics. 

Despite enormous interest to invariant submanifolds (especially to the simplest 

ones: those of complex dimension one), absolutely nothing was known about the 

structure of these special Teichmfiller discs: about their number, genus, area, 

cusps, etc. It was neither known which "integer points" belong to the same 

Teichmfiller disc. 

1.1. MAIN RESULTS. In this paper, we study square-tiled surfaces in the 

stratum 7-/(2). This stratum is the moduli space of holomorphic 1-forms with 

a unique (double) zero on a surface of genus two. For surfaces tiled by a prime 

number of squares, we show: 

THEOREM 1.1: For any prime n >i 5, the SL(2 ,R)-orbi ts  of  n-square-tiled 

surfaces in "]-/(2) form two Teichmfiller discs DA(n)  and DB(n) .  

THEOREM 1.2: DA(n) and DB(n)  can be seen as the unit tangent bundles to 

orbifold surfaces with the following asymptot ic  behavior: 

�9 genus .~ cn 3, with CA = CB = (3/16)(1/12), 

�9 area ~ cn 3, with CA = CB = (3/16)(7r/3), 
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�9 number of cusps ,,~ cn 2, with CA = 1/24 and cs = 1/8, 

�9 number of  elliptic points O(n), one of them having none. 

PROPOSITION 1.3: All these discs arise from L-shaped billiards. 

Our results are extended by McMullen [Mc2] to describe the repartition into 

different orbits of all Veech surfaces in 7/(2). In particular, the invariant intro- 

duced in w also determines orbits in the nonprime case. 

1.2. SIDE RESULTS. We find the following as side results of our study: 

�9 One-cyl inder  direct ions.  

PROPOSITION 1.4: All surfaces in 7-/(2) tiled by a prime number of  squares have 

one-cylinder directions, i.e. directions in which they decompose into one single 

cylinder. 

�9 Discs wi thou t  elliptic points.  During some time, the search for new 

Veech surfaces focused on examples arising from billiards in rational- 

angled polygons. Angles of the billiard table not multiples of the right 

angle lead to elliptic elements in the Veech group. Billiards with all angles 

multiples of the right angle have however recently been studied, especially 

L-shaped billiards (see [Mc]). 

�9 Discs of  ( a rb i t ra ry  high) posi t ive genus. When a Veech group has 

positive genus, the subgroup generated by its parabolic elements has infi- 

nite index, and cannot be a lattice. This implies that the naive algorithm 

which consists in finding parabolic elements in the Veech group cannot 

lead to obtain the whole group not even up to finite index. 

The surfaces arising fro,n billiards in the regular polygons, studied by Veech 

in [Ve92], have genus tending to infinity, and one could probably show that the 

genus of their Veech groups also tends to infinity, though Veech does not state 

this explicitly. 

Our examples give families of Teichmfiller discs of arbitrarily high genus, the 

translation surfaces in these discs staying in genus two. 

�9 tNoncongruence subgroups .  Since we deal with families of subgroups 

of SL(2, Z), it is natural to check whether they belong to the well-known 

family of congruence subgroups. Appendix A provides an example of 

a Veech group that is a non-congruence subgroup of SL(2, Z). Another 

example was given by G. Schmithfisen [Schmi]. A detailed discussion of 
the congruence problem in this setting will appear in [HL]. 

�9 Devia t ion  from the  mean  order.  
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PROPOSITION 1.5: The number of n-square-tiled surfaces in ?/(2) for prime n 

is asymptotically 1/((4) times the mean order of the number of n-square-tiled 

surfaces in 7-/(2). 

1.3. METHODS. We parametrize square-tiled surfaces in ?/(2) by using sepa- 

ratrix diagrams as in [KoZo], [Zo] and [EsMaSc]. These coordinates bring the 

study of Teichmfiller discs of n-square-tiled surfaces down to a combinatorial 

problem. 

We want to describe the SL(2, Z) orbits of these surfaces. Using the fact that 

?/-/(2) is a hyperelliptic stratum, the combinatorial representation of Weierstrass 

points allows us to show there are at least two orbits for odd n ~> 5. Showing 

there are only two is done for prime n in a combinatorial way, by a careful study 

of the action of generators of SL(2, Z) on square-tiled surfaces. 

For the countings, we use generating functions. 

1.4. RELATED WORKS. Our counting results are very close to the formulae 

in [EsMaSc]. Eskin-Masur-Schmoll calculate Siegel-Veech constants for torus 

coverings in genus two. In ?/-/(2), these calculations are based on counting the 

square-tiled surfaces with a given number of squares. The originality of our 

work is to count square-tiled surfaces disc by disc. 

There are also analogies with Schmoll's work [Schmo]. He computes the ex- 

plicit Veech groups of tori with two marked points and the quadratic asymptotics 

for theses surfaces. Some of the methods he uses are intimately linked to those 

used in our work. The Veech groups he exhibits are all congruence subgroups. 

A computer program allows to give all the geometric information on Teich- 

miiller discs of square-tiled surfaces in ?/(2). Schmithfisen [Schmi] has a program 

to compute the Veech group of any given square-tiled surface. She also found 

positive genus discs as well as noncongruence Veech groups. MSller [M5] com- 

putes algebraic equations of some square-tiled surfaces and of their Teichmfiller 

curves. 

1.5. ACKNOWLEDGEMENTS. We thank Anton Zorich for stating questions 

and some conjectures. We thank the Institut de Math~matiques de Luminy and 

the Max-Planck-Institut fiir Mathematik for excellent welcome and working 

conditions. We thank JoB1 Rivat, Martin Schmoll and other participants of 

the conference 'Dynamique dans l'espace de Teichmfiller et applications aux 

billards rationnels' at CIRM in 2003. We thank Martin M511er and Gabriela 

Schmithiisen for comments on a previous version of this paper, circulated under 

the title "Square-tiled surfaces in ?/(2)". 
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2.1. TRANSLATION SURFACES, VEECH SURFACES. Let S be an oriented com- 

pact surface of genus g. A translation structure on S consists in a set of points 

{P1,. �9 �9 Pn} and a maximal atlas on S \  {P1, �9 �9 �9 Pn } with translation transition 

functions. 

A holomorphic 1-form w on S induces a translation structure by considering its 

natural parameters, and its zeros as points P 1 , . . . ,  Pn. All translation structures 

we consider are induced by holomorphic 1-forms. Slightly abusing vocabulary 

and notation, we refer to a translation surface (S, w), or sometimes just S or w. 

A translation structure defines: a complex structure, since translations are 

conformal; a flat metric with cone-type singularities of angle 2(ki + 1)7r at order 

ki zeros of the 1-form; and directional flows Y0 on S for 0 E] - 7r, 7~]. 

Orbits of the flows Ye meeting singularities (backward, resp. forward) are 

called (outgoing, resp. incoming) sepaxatrices in the direction 0. Orbits meeting 

singularities both backward and forward axe called sadd le  connec t ions ;  the 

integrals of w along them are tile associated c o n n e c t i o n  vectors .  

Define the singularity type of a 1-form w to be the unordered tuple a = 

( k l , . . . ,  kn) of orders of its zeros (recall kl + . . .  + kn = 2g - 2, all ki > 0). The 

singularity type is invariant by orientation-preserving diffeomorphisms. The 

moduli space 7-/g of holomorphic 1-forms on S is the quotient of the set of 

translation structures by the group Diff+(S) of orientation-preserving diffeo- 

morphisms. 7/g is stratified by singulaxity types, the strata are denoted by 

SL(2, R) acts on holomorphic 1-forms: if w is a 1-form, {(U, f ) )  the transla- 

tion structure given by its natural parameters, and A C SL(2, R),  then A - w  = 

{(U, A o f ) ) .  As is well known, this action (to the left) commutes with that  (to 

the right) of Diff+(S) and preserves singularity types. Each stratum 7/(a) thus 

inherits an SL(2, R) action. The dynamical properties of this action have been 

extensively studied by Masur and Veech [Ma, Ve82, etc.]. 

From the behavior of the SL(2, R)-orbit of w in 7-/(a) one can deduce prop- 

erties of directional flows Yo on the translation surface (S, w). The Veech 

dichotomy expressed below is a remarkable illustration of this. 

Call affine d i f f e o m o r p h i s m  of (S, w) an orientation-preserving homeomor- 

phism f of S such that  the following three conditions hold: 

�9 f keeps tile set {P1 . . . .  , Pn} invariant; 

�9 f restricts to a diffeoinorphism of S \ {P1,. . . ,  Pn}; 

�9 the derivative of f computed in the natural charts of w is constant. 
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The derivative can then be shown to be an element of SL(2, R). 

Affine diffeomorphisms of (S, w) form its affine group Aff(S,w), their deriva- 

tives form its Veech group V(S, w) < SL(2, R), a noncocompact fuchsian group. 

The Veech group is the stabilizer of (S, w) for the action of SL(2, R) on 7/g. 

Veech showed that the derivation map Aft(S, w) --+ V(S, w) is finite-to-one. We 

show (Proposition 4.4) that in 7/(2) it is one-to-one. 

THEOREM (Veech dichotomy): If  V(S,w) is a lattice in SL(2, R) (i.e. 

vol(V(S,w)\SL(2, R)) < c~) then for each direction O, either the flow Jzo is 

uniquely ergodic, or all orbits of Fe are compact and S decomposes into a 
finite number of cylinders of commensurable moduli. 

Cylinder decompositions are further discussed in w Translation surfaces 

with lattice Veech group are called Veech surfaces. 

2.2. SQUARE-TILED SURFACES~ LATTICE OF PERIODS. A translation covering 
is a map f: (St, wl) ) ($2,w2) of translation surfaces that 

�9 is topologically a ramified covering; 

�9 maps zeros of ~d 1 to zeros of w2; 

�9 is locally a translation in the natural parameters of Wl and w2. 

Translation covers of the standard torus marked at the origin are the simplest 

examples of Veech surfaces. Such surfaces are tiled by squares. 

We call them square-tiled. The Gutkin-Judge theorem states: 

THEOREM (Gutkin-Judge): A translation surface (S,w) is square-tiled if and 
only if its Veech group V(S,w) shares a finite-index subgroup with SL(2, Z). 

Translation surfaces with such (arithmetic) Veech groups have also been called 

arithmetic; another name for them is origamis. A proof of Gutkin and Judge's 

theorem, very different from the original, is given in Appendix C. 

The subgroup of R 2 generated by connection vectors is the lattice of relative 

periods of (S, w), denoted by A(w). 

LEMMA 2.1: A translation surface (S,w) is square-tiled if and only if A(w) is a 
rank 2 sublattice of Z 2. 

Proof: If (S, w) is square-tiled, connection vectors are obviously integer vectors, 

so they span a sublattice of Z 2. Conversely, let 

f: (S,w) -+ R2/A(w), 

f: z ~ w mod A(w), 
o 



Vol. 151, 2006 PRIME ARITIIMETIC TEICHMOLLER DISCS 287 

where zo is a given point of (S, w). 
The integral is well-defined modulo the lattice of absolute periods; f is a 

fortiori well-defined. Since f is holomorphic and onto, it is a covering. Since 
relative periods are integer-valued, it is clear that zeros of w project to the 
origin. So, given a point P ~ 0 on the torus, preimages of P are all regular 
points, so P is not a branch point. Hence the covering is ramified only above the 
origin. Composing f with the covering g: R2/A(w) ~ R.2/Z 2, we see (S,w) is 

square-tiled. | 

A square-tiled surface (S, w) is called primitive if A(w) = Z 2. 

LEMMA 2.2: Let (S,w) bc an n-square-tiled sm'face of genus g > 1. If  n is 
prime then A(w) = Z 2. 

Proof: Lemma 2.1 shows that (S,w) is a ramified cover of R2/A(~). Let d be 
the degree of the covering. Then n = d.  [Z 2 : A(w)]. So obviously if n is prime 
then A(w) = Z 2. | 

Note that A(w) is not always Z 2, as 

i ~ i: i sh~ by the examples in the figure" On 
�9 _ . . . . .  i . the left, a torus T with lattice of peri- 

} ]: } [ ods 2Z x Z and Veech group generated by 
(~ 21) and (1~2 0). On the right, a genus 
2 cover of T, with A(w) = 2Z x Z and 

Veech group generated by (~ ~) and (1~2 ? ) "  
The following lemma was explained to us first by Martin Schmoll then by 

Anton Zorich. 

LEMMA 2.3: Let (S,w) be a square-tiled surface; then V(S,w) is a subgroup in 
V(R2/A(w), dz). In particular, if (S, w) is primitive, then V(S, w) < SL(2, Z). 

Proof: Let r V(S,w) --+ V(R2/h(w) ,dz) ,  
A = dr, f E Aft(S,w) ~ A. 

The only difficulty is to show that r is well-defined, i.e. that any element A in 
V(S, w) preserves A(w). Since any element of the affine group maps a connection 
to a connection, hence A maps a connection vector to a connection vector (i.e. 
an element in A(w)). | 

Remark: As shown by the examples above, there are Veech groups of squea'e- 
tiled surfaces which are not subgroups of SL(2, Z). 
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2 .3 .  CYLINDERS OF SQUARE-TILED SURFACES. A square-tiled surface decom- 

poses into maximal horizontal cylinders, bounded above and below by unions 

of saddle connections, each of which appears once on the top of a cylinder and 

once on the bottom of a cylinder. Gluing the cylinders alongs these saddle con- 

nections builds back the surface. 

~0 

t 

t < ) 

hi/ 
< 

W 

/ 
> 

A cylinder on a translation surface is isometric to 

R / w Z  x [0, h], for some h and w. 

Convent ion.  We refer to these dimensions as 

height and width respectively, whether the 'horizontal 

direction of the cylinder' coincides with the horizontal 

direction of the surface or not. 

An additional twist parameter t is needed, measur- 

ing the distance along the 'horizontal direction of the 

cylinder' between some (arbitrary) reference points on 

the bottom and top of the cylinder, for instance some 

ends of saddle connections. 

2.4. ACTION OF SL(2, Z) ON SQUARE-TILED SURFACES. 

LEMMA 2.4: The SL(2, Z)-orbit of a primitive n-square-tiled surface is tim set 

of primitive n-square-tiled surfaces in its SL(2, R)-orbit. 

Proos SL(2, Z) preserves Z 2 (= A(w) if (S,w) is primitive square-tiled) and 

hence the property of being primitive square-tiled. Conversely, if (S, w) is prim- 

itive square-tiled and ($1, wl) = A.(S, w) is square-tiled for some A E SL(2, R), 

then A(wl) = A.A(w) means A preserves Z ~, so A E SL(2, Z). | 

Remark: The number of squares, n, is preserved by SL(2, R) because it is the 

area of the surface. Consequently, SL(2, Z) �9 (S, w) is finite. 

Notation: Denote by U = (~ 11) and R = (0 01) the standard generators of 

SL(2, Z), and by U = (U) = {(o 1 ?): n e Z} the subgroup generated by U. 

R on squares. > 

The action on square-tiled surfaces is obtained by applying the same to all 

square tiles. The new horizontal cylinder decomposition is then recovered by 

cutting and gluing (see example in w 
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2.5. HYPERELLIPTIC SURFACES, WEIERSTRASS POINTS. Recall that a Rie- 

mann surface X of genus g is hyperelliptic if there exists a degree 2 meromorphic 

function on X. Such a function induces a holomorphic involution on X. This 

involution has 2g + 2 fixed points called Weierstrass points. The set of these 

points is invariant by all automorphisms of the complex structure. A translation 

surface is called hyperelliptic if the underlying Riemann surface is hyperelliptic. 

Hyperelliptic translation surfaces have been studied by Veech. He showed 

[Ve95] that in genus g they are obtained from centrosymmetric polygons with 

4g or 4g + 2 sides by pairwise identifying opposite sides. 

The hyperelliptic involution is in these coordinates the reflection in the cen- 

ter of the polygon; the Weierstrass points are the center of the polygon, the 

midpoints of its sides, and the vertices (identified into one point) in the 4g case 

(in the 4g + 2 case the vertices are indentified into two points exchanged by the 

hyperelliptic involution). 

2.6. CusPs. Let F be a fuchsian group. A parabolic element of F is a matrix 

of trace 2 (or -2) .  A point of the boundary at infinity of H e is parabolic if it 

is fixed by a parabolic element of F. A cusp is a conjugacy class under F of 

primitive parabolic elements (primitive meaning not powers of other parabolic 

elements of F). 

Recall that a lattice admits only a finite number of cusps. 

Geometrically, each cusp in F \ H  2 has, for some positive A called its width ,  

neighborhoods isometric to the quotients of the strips 

{z E C: 0 < IRez[ < ,~,Imz > M} 

by the translation z ~-~ z + A, for large M. 

On a Veech surface (S, w), any 'periodic' direction is fixed by a parabolic ele- 

ment of the Veech group. Conversely, the eigendirection of a parabolic element 

in the Veeeh group is a 'periodic' direction. We call such directions parabolic. 

Thus parabolic limit points of V(S, w) are cotangents of parabolic directions. 

When (S, w) is a square-tiled surface, the set of parabolic limit points is 

Q. Cusps are therefore equivalence classes of rationals under the homographic 

action of V(S, w). The following lemma gives a combinatorial description of 

cusps for a square-tiled surface. 

LEMMA 2.5 (Zorich): Let (S, w) be a primitive n-square-tiled surface and E = 

SL(2, Z). (S, w) the set of n-square-tiled surfaces in its orbit. The cusps of(S, w) 
are in bijection with the U-orbits of E. 
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Prook Denote by C the set of cusps of (S,w). 

L e t ~ :  SL(2, Z) !+ Q _5+ C, 
A ~ A - i c e  ~ A - l c c m o d  V(S,w) .  

Note that  cc corresponds to the horizontal direction in (S,w) because the 

projective action is the action on co-slopes and not on slopes. A - l e e  corresponds 

to the direction on (S,w) that  is mapped by A to the horizontal direction of 

A .  (S, w). 

pulls down as r 
A .  

r is well-defined: if A .  

setting A - l o o  = a, B - l o t  

so a and fl correspond to 

is. Indeed, Va = p/q, 3A 

SL(2, Z) is Q.) 

E -+ C, 
(S,w) ~-+ A - l e o  mod V(S,w) .  

(S,w) = B .  (S,w),  then 3 P  E V(S) ,  B = AP,  so 

=/3,  we have/3 = B - l o o  = ( B - 1 A ) A - l o o  = p - lo l ,  

the same cusp. Further, r is surjective because f 

E SL(2, Z) s.t. A- loo  = a. (The orbit of oo under 

Recall that  the stabilizer of c~ for the action of SL(2, Z) is N. If r  = 

r where (S l ,w l )  = A .  (S,w) and ($2,w2) = B - ( S , w ) ,  then ~(A) = 

Let c~ = f ( A )  = A - l a o  and B = f ( B )  = B - l o o .  Since c~ and 13 corre- 

spond to the same cusp, ~P E V(S )  s.t. fl = P a .  So oo = Ac~ = A p - I ~  = 

A P - a B - l o o  which implies A P - 1 B  -1 E bl, i.e. 3U k E N s.t. A P  -1 = UkB,  i.e. 

A P - *  �9 (S,w) = A .  (S,w) = UkB �9 (S,w), so that  (S l ,wl )  and (S~,w2) are in 

the same N-orbit. 

Conversely: if ($2,w2) = Uk(Sl,Wa) with U k E N, and ($2,w2) = B .  (S,w) 

and (&,Wl) = A .  (S,w),  then r = B - l o o  = A - 1 U - k o o  = A - l o o  = 

l]) ( S l ,  0.)1 )" Im 

2.7. ELLIPTIC POINTS. Recall that  in a fuchsian group F, any elliptic element 

has finite order and is conjugate to a rational rotation. 

A fixed point in H 2 of an elliptic element of F is called 

elliptic. Its projection to the quotient F \ H  ~ is a cone 

point, with a curvature default. For instance, the mod- 

ular surface SL(2, Z ) \ H  2 has two cone points, of angles 

7r and 2~-/3. 

Suppose that  F is the Veech group of a translation surface and has an elliptic 

point. By applying a convenient element of SL(2, R),  we can suppose that 

this point is i. The corresponding elliptic element is a rational rotation. The 

translation surfaces which project to i have this rotation in their Veech group. 

This roughly means that  they have an apparent symmetry. At the Riemann 
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surface level, the rotation is an automorphism of the complex structure (it 

modifies the vertical direction but not the metric). For genus 1, the cone point i 

(resp. e i~/3) of the modular surface corresponds to the square (resp. hexagonal) 

torus, which has a symmetry of projective order 2 (resp. 3). 

One should note that the translation surfaces obtained from rational poly- 

gonal billiards always have elliptic elements in their Veech group: writing the 

angles of a simple polygon as ( k l T r / r , . . . ,  kqTc/r),  with kl , . .  �9 kq, r coprime, the 

covering translation surface is obtained by gluing 2r copies by symmetry. The 

rotation of angle 2 ~ / r  is in the Veech group (this rotation is minus the identity 

if r = 2). Many explicit calculations of lattice Veech groups make use of this 

remark (see [Ve89], [Vo], [Wa]). Our method is completely different. 

2.8. THE GAUSS-BONNET FORMULA. Let F be a finite-index subgroup of 

SL(2, Z) containing - Id. The quotient of F\SL(2, R) is the unit tangent bundle 

to an orbifold surface with cusps St. Algebraic information on the group is 

related to the geometry of the surface. 

Let d be the index [SL(2, Z) : F] of F in SL(2, Z), e2 (resp. e3) the number of 

conjugacy classes of elliptic elements of order 2 (resp. 3) of P, e~  the number 

of conjugacy classes of cusps of F. 

Then the surface Sr has hyperbolic area d~, e2 cone points of angle 7r, e3 
cone points of angle 2~ -~, e~ cusps, and its genus g is given by: 

ThE GUASS-BONNET FORMULA: g = 1 + d / 1 2  - e2/4 - e 3 / 3  - eoo/2.  

3. Specific tools  

In this section we give specific properties of the stratum 7/(2), and a combina- 

torial coordinate system for square-tiled surfaces in 7/(2). 

3.1. HYPERELLIPTICITY. First recall that any genus 2 Riemann surface is 

hyperelliptic. Given a genus 2 Riemann surface X and its hyperelliptic involu- 

tion T, any 1-form w on X satisfies T*W = --W. 

In the moduli space of holomorphic 1-forms of genus 2, 7/(2) is the stratum 

of 1-forms with a degree 2 zero (a cone point of angle 6~). 

As said in w any translation surface in 7/(2) can be represented as a centro- 

symmetric octagon. The six Weierstrass points are the center of the polygon, 

the middles of the sides and the cone-type singularity. The position of the 

Weierstrass points in a surface decomposed into horizontal cylinders is described 

in w 
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3.2. SEPARATRIX DIAGRAMS. Forms in 7/(2) have a single degree 2 zero, 

geometrically a cone point of angle 6~r, with three outgoing separatrices and 

three incoming ones in any direction. 

Recall that the horizontal direction of a square-tiled surface is completely 

periodic; the horizontal separatrices are saddle connections. The combinatorics 

of these connections is called a separatrix diagram in [KoZo]. The surface is 

obtained from this diagram by gluing cylinders along the saddle connections. 

Each outgoing horizontal separatrix returns to the saddle making an angle 

It, 37~ or 57~ with itself. Four separatrix diagrams are combinatorially possible 

(up to rotation by 27r around the cone point); they correspond to return angles 

(~, ~, ~), (~, 3~, 5~), (377, 3~, 3~), (5~, 5~, 5~): 

There is no consistent way of gluing cylinders along the saddle connections of 

the first and last diagrams to obtain a translation surface. 

The second diagram is possible with the condition that the saddle connections 

that return with angles 7~ and 5~r have the same length; this diagram corresponds 

to surfaces with two cylinders. The third diagram corresponds to surfaces with 

one cylinder, with no restriction on the lengths of the saddle connections. 

3.3. PARAMETERS FOR SQUARE-TILED SURFACES IN 7/ (2) .  Here we give 

complete combinatorial coordinates for square-tiled surfaces in 7/(2). See 

figures in w 

Notation: We use A for greatest common divisor, and V for least common 

multiple. 

3.3.1. One-cylinder surfaces. A one-cylinder surface is parametrized by the 

height of the cylinder, the lengths of the three horizontal saddle connections 

(a triple of integers up to cyclic permutation), and the twist parameter. If all 

three horizontal saddle connections have the same length, the twist parameter 

is taken to be less than that length; otherwise, less than the sum of the three 

lengths. 
For primitive surfaces, the height is 1, and the lengths of the three horizontal 

saddle connections add up to the area n of the surface. 
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The horizontal saddle connections appear in some (cyclic) order on the bot tom 

of the cylinder, and in reverse order on the top. 

3.3.2. Two-cylinder surfaces. Labeling the horizontal saddle connections 

according to their return angles, call them 7r, 73~, 75~. Call ~1 the common 

length of 7~ and 75~, and ~2 the length of 73~. One cylinder is bounded below 

by 7~ and above by 7s~; the other one is bounded below by 75~ and 73~, and 

above by "y~ and 73~. 

A two-cylinder surface is determined by the heights hi, he and widths wl = gl, 

w2 = el +~2 > Wl of the cylinders as well as two twist parameters tl, te satisfying 

0 ~ tl < wl, 0 ~< te < w2. The area of the surface is hlWl + h2we = n. For 

primitive surfaces, hi A he = 1. For prime n, in addition, gl A g2 = 1, and (P) 

gl A he = 1. 

3.4. ACTION OF SL(2, Z). The action of R (rotation by 7r/2) does not preserve 

separatrix diagrams in general. The horizontal cylinder decomposition of R .  S 

is the vertical cylinder decomposition of S. 

U is the primitive parabolic element in SL(2, Z) that preserves the horizontal 

direction. Its action preserves separatrix diagrams, as well as heights hi and 

widths wi of horizontal cylinders Ci, and only changes twist parameters ti to 

(ti + hi) mod wi. 

Here is an example of how U acts on a surface. 

- , - , ,  - - , - , ,  - - , - s t  - 

For prime n, given a cyclically ordered 3-partition (a, b, c) of n, all one-cylinder 

surfaces with bot tom sides of lengths a, b, c (up to cyclic permutation) are in 

the same U-orbit, or cusp (see Lemma 2.5). 

The following lemma describes U-orbits of two-cylinder surfaces in 7/(2) by 

giving their sizes and canonical representatives. 

LEMMA 3.1: Let S be a primitive two-cylinder n-square-tiled surface in 7/(2) 

with parameters hi, wi, ti (i = 1, 2). Then the cardinality of its U-orbit (its 
cusp  w i d t h )  is 

c w ( S ) -  Wl w2 ( wl w2 ) 
w l A h ~ V - -  - - -  x - -  for prime n . 

w2 A h2 wl A hi w 2 A h2 
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Tile surface S' with h~ = hi, w~ = wi, and t~ = ti mod (wiAhi) is a "canonical" 

representative of  the U-orbit orS.  Each surface thus has a unique representative 

with 0 <. t~ < wi A hi. 

Proo~ Observe that U k �9 S has widths wi, heights hi, and twist parameters 

(ti + khi) mod wi. So for U k �9 S to coincide with S, the integer k must be a 

multiple of ~ for each i. The cusp width is the least such positive k, the least 

common multiple of ~1 and w__y_z_ The second part is a simple application 
w l A h l  w 2 A h 2  ' 

of the Chinese remainder theorem. | 

4. R e s u l t s  

This section expands the results summarized in the introduction, detailed proofs 

are postponed to the next sections. Additional conjectures appear in w 

4.1. T w o  ORBITS. Theorem 1.1 can be reformulated as: 

PROPOSITION 4.1: Given a prime n t> 5, the primitive n-square-tiled surfaces 

in 7-/(2) fall into two SL(2, Z) orbits. 

The idea for proving this is first to give an invariant which takes two different 

values, thus proving that  there are at least two orbits (see w below, and w 

then prove that  there are exactly two orbits by showing that each orbit contains 

a one-cylinder surface (see w and that  all one-cylinder surfaces with the 

same invariant are indeed in the same orbit (w 

We will call these orbits A and B. 

Remark: An extension of this result in some components of higher-dimensional 

s trata is presented in Appendix B. 

4.2. INVARIANT. We present a geometric invariant that  can easily be com- 

puted for any primitive square-tiled surface in "/-/(2) (for instance, presented in 

its decomposition into horizontal cylinders.) 

The Weierstrass points of a surface in ?-/(2) are 

�9 the saddle (67r-angle cone point), 

�9 and five regular points. 

LEMMA 4.2: The number of integer Weierstrass points of a primitive square- 

tiled surface is invariant under the action of  SL(2, Z). 

By integer point we mean a vertex of the square tiling. The proof of the 

lemma is obvious, since SL(2, Z) preserves Z 2. 



Vol. 151, 2006 PRIME ARITtlMETIC TEICHM(JLLER DISCS 295 

PROPOSITION 4.3: Primitive n-square-tiled surfaces in 7/(2) have 

�9 for n = 3, exactly 1 integer Weierstrass point, 

�9 for even n, exactly 2, 

�9 for odd n, either 1 or 3 (both values occur). 

Martin M611er pointed out to us that this invariant also appears in [Ka, w 

fornmla (6)] in algebraic geometric language; Kani's normalized covers corre- 

spond to our orbit B. This invariant is also mentioned in [MS, Remark 3.4]. 

4.3. ELLIPTIC AFFINE DIFFEOMORPHISMS. 

PROPOSITION 4.4: A trm~slation surface in 7/(2) has no nontrivial translation 

in its a//ine group. Hence the derivation from its afline group to its Veech group 

is an isomorphism. 

PROPOSITION 4.5: A translation surface in 7/(2) can have no elliptic element 

of order 3 in its Veech group. 

LEMMA 4.6: Any  R-invariant Veedl surface in 7/(2) can be represented as a 

R-invariant octagon. 

PROPOSITION 4.7: For any given pr/me n, there exist R-invariant n-square-tiled 

7/(2) surfaces. All of them have the same invariant, namely, A if  n = - 1  [4] 

and B if n - 1 [4]. 

Remark: This proposition implies the following interesting fact: there are 

finite-covolume Teichmiiller discs with no elliptic points. This differs from the 

billiard case which has been the main source of explicit examples of lattice Veech 

groups. 

4.4. COUNTINGS. The asymptotic number of square-tiled surfaces in 7/(2) 

of area bounded by N is given in [Zo] (see also [EsOk] and [EsMaSc]) to be 
~(4) . ~  for one-cylinder surfaces and 5 g 4 ~(4) -~-  for two-cylinder surfaces. The 

mean order for tile number of square-tiled surfaces of area exactly n is therefore 

~(4)@ for one-cylinder surfaces and 5 n 3 ~((4) y for two-cylinder surfaces. 

The following proposition, from which Theorem 1.2 follows, states that  for 

prime n, there are in fact a.symptotics for these numbers, which are ~(4) times 

smaller than the mean order. 
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PROPOSITION 4.8: For prime n, there are O(n) elliptic points, and the following 

countings and asymptotics hold for surfaces and cusps, according to the number 

of cylinders and to the orbit. 

surfaces: 
1-cyl 2-cyl a11 1-eyl 

A n ( n - - 1 ) ( n + l )  7 n ~ 9 n 3 A (n - -1 ) (n+ l )  
24 ~ i T  "~ i - 6 -  24 

B n(n-U(n-3) 3 n ~ 9 n 3 B (n-1)(n-3) 
s ~ i T  N i T  s 

a l l  n(n--1)(n--2)6 ~ i T 5  n = ~ 4 7 9  n ~ all (n-1)(n-2)6 

cusps: 
2-cyl all 

n 2 

~  ~ 24 

o ( n a / 2 + = )  n ~ 
~ 8 

o ( n 3 / 2 + ~ )  n ~ 
~ 6 

This proposition gives more detail than Theorem 1.2 by distinguishing one- 
cylinder and two-cylinder cusps and surfaces. Proposition 1.4 and Proposi- 
tion 1.5 are corollaries of this proposition. 

Remarks: Orbits A and B have asymptotically the same size (same number 
of square-tiled surfaces). However, orbit B has asymptotically three times as 
many one-cylinder surfaces as orbit A. 

In each orbit the proportion of two-cylinder cusps is asymptotically negligible; 
however, it is not the case for the proportion of two-cylinder surfaces. This 
shows that the average width of the two-cylinder cusps grows faster than n. 
(One-cylinder cusps all have width n.) 

5. P r o o f  of ma in  t h e o r e m  (two orbi ts)  

In this section we first prove Proposition 4.3, then Proposition 4.1. 

Conven t ion  for figures. In all figures, we represent a square-tiled surface 
S in 7-/(2) by a fundamental octagonal domain. S is obtained by identifying 

pairs of parallel sides of same length; all vertices (black dots) get identified to 
the saddle. Circles are sometimes used to indicate the other Weierstrass points. 

Except in w the octagon reflects 
horizontal cylinders: nonhorizontal sides _ ~ _ ~  ! ~ i ~ 
are identified by horizontal translations. 
On one-cylinder surfaces, the horizontal 2 ~ /  ~ /  
sides on the top and on the bottom of the / / o ! 
cylinder are identified in opposite cyclic or- 

/ 
/ der. Two-cylinder surfaces are represented 

with the cylinder of least width on top of 
the widest one, to the left. Its top side is 
glued to the leftmost side under the bottom cylinder. The remaining two sides, 
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to the right on the top and bottom of the bottom cylinder, are identified with 

each other. 

5.1.  TWO VALUES OF THE INVARIANT. Here we prove Proposition 4.3, about 

the possible values of the number of integer Weierstrass points of a primitive 

square-tiled surface in 7-/(2). 

Recall that  the hyperelliptic involution turns the cylinders upside-down. We 

deduce the position of Weierstrass points (see figure). 

The saddle is always an integer Weierstrass point. We discuss the case of the 

remaining five, depending on the parity of the parameters. 

Under the hyperelliptic involution: 

* Saddle connections that  bound a cylinder both on its top and on its bottom 

are mapped to themselves with reversed orientation, so that  their midpoint 

is fixed: it is a Weierstrass point, integer when the length of the saddle 

connection is even. 

�9 The core circle of a cylinder, also mapped to itself with orientation re- 

versed, has two antipodal fixed points. If the cylinder has odd height, 

none of them is integer. When the height is even and the width odd, one 

of them is integer. When the height and width are even, either both or 

none is integer, depending on the parity of the twist parameter. 

5.1.1. One-cylinder case. The core of the (height 1) cylinder contains two 

non-integer Weierstrass points. The remaining three are the midpoints of the 

horizontal connections (whose lengths add up to n). 

If n is odd, it splits into either 3 odd lengths (no integer Weierstrass point), 

or 1 odd and 2 even lengths (2 integer Weierstrass points). For n = 3 all lengths 

are 1 (hence odd); for greater odd n both cases occur. 

If n is even, two lengths are odd and one even (if all were even, the surface 

could not be primitive). This completes the one-cylinder case. 

5.1.2. Two-cylinder case. We use parameters hi,  h2, Wl, w2, tl ,  t2 introduced 

above. We also use 61 and 62 to denote the lengths of the horizontal saddle 

connections. We then have: 

(*) 61= Wl, 61+ 62 = w2, n = wlh l  + w2h2 = h161+ h2(61+ 62). 

�9 O d d  n. If 62 is even, the corresponding Weierstrass point is integer. Because 

n is odd, equation (,) implies that  61 is odd, thus both cylinders have odd widths, 

and still by (*) one of the heights must be even. The corresponding cylinder 

has one integer Weierstrass point on its core line. The total number of integer 

Weierstrass points is then 3. 
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If e2 is odd, the corresponding Weierstrass point is non-integer; if gl is odd 

(resp. even), then w2 is even (resp. odd), thus by (*) hi (resp. h2) has to be odd, 

meaning the top (resp. bottom) cylinder contains two non-integer Weierstrass 

points. The two Weierstrass points in the bottom (resp. top) cylinder are integer 

if h2 is even and t2 is odd (resp. if hi and tl are even), non-integer otherwise 

(see figure above). The value of the invariant is accordingly 3 or 1. 

For n = 3, el = g2 = 1; for greater odd n both values do occur. 

�9 Even  n. Recall that  primitivity implies hi A h2 = 1. In particular, at least 

one of them is odd. 

If both heights are odd, the Weierstrass points inside the cylinders are non- 

integer, and because n = (hi + h2)el + h2e2 is even, t?2 has to be even, so the 

last Weierstrass point is integer, and the invariant is 2. 

If hi is odd and h2 even, then, by (*), el has to be even. Then if e2 is odd, 

the corresponding Weierstrass point is non-integer, one of the Weierstrass points 

inside the bottom cylinder is integer, and the invariant is 2. If e2 is even, the 

corresponding Weierstrass point is integer, and t2 has to be odd for the surface 

to be primitive, hence the remaining Weierstrass points are non-integer, and the 

invariant is 2. 

The last case to consider is when hi is even and h2 odd. If el is odd, then 

so is g2 (by (*)), so one Weierstrass point in the top cylinder is integer, and 

the invariant is 2. If gl is even, then e2 is also even by (*). The corresponding 

Weierstrass point is integer, and tl is odd for primitiveness. Thus all Weierstrass 

points inside cylinders are non-integer, and the invariant is 2. 

This completes the two-cylinder case, and Proposition 4.3 is proved. 

�9 S u m m a r y  of  two-cy l inde r  case. For future reference, we sum up the 

case study above in a table giving the invariant for odd n according to the parity 

of hi,  h2, t?l, g2 (recall that  wl = ~1 and w2 = gl + g2). 

hi h2 ~1 ~2 invariant 
0 1 1 0 3 
1 0 1 0 3 
0 1 0 1 t l o d d :  1 ; t l even :  3 
1 0 1 1 t2odd:  3; t2even:  1 
1 1 0 1 1 
1 1 1 1 1 

all primitive surfaces. 

Table for odd n case. 

The other combinations of pari- 

ties of the parameters cannot hap- 

pen for odd n and primitive sur- 

faces. 

Note that  for even n we con- 

cluded that the invariant is 2 for 
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5.2. REDUCTION TO ONE CYLINDER. 

PROPOSITION 5.1: Each orbit contains a one-cylinder surface. Equivalently, 

each surface has a direction in which it decomposes in one single cylinder. 

A baby version of this proposition is the following lemma. 

LEMMA 5.2: A two-cylinder surface of height 2 tiled by a prime number of 

squares has one-cylinder directions. 

Proof of the lemma: Consider a surface made of two cylinders, both of height 

1. Since n is prime, the two widths are relatively prime. By acting by U, the 

twists can be set to any values (see Lemma 3.1). Set the top twist to 0 and the 

bottom twist to 1. Then by considering the vertical flow, we get a one-cylinder 

surface. | 

We prove the proposition by induction on the height of the surface: given a 

two-cylinder surface, we show that  its orbit contains a surface of strictly smaller 

height. 

Consider a two-cylinder square-tiled surface S in 7-/(2), with a prime number 

of square tiles. By acting by U we can move to the canonical representative of 

the same cusp (see Lemma 3.1), so we will assume ti < wi, i -- 1, 2. 

We split our study into four cases according to which twists are zero. 

CASE 1: Both twists are nonzero. 

Call hi, h2 the heights and tl,  t2 the twists of the horizontal cylinders of 

S. Consider the rotated surface RS. If RS consists of one horizontal cylinder, 

we are done. Otherwise, it has two horizontal cylinders, which are the vertical 

cylinders of S, and fill S. Looking to the right of A, H, and B, we see all vertical 

cylinders of S. The vertical cylinder to the right of A has height at most t2, 

that  to the right of B also, and that  to the right of H at most tl. So one of the 

vertical cylinders has heights at most t2, and the other one has height at most 

tl.  The sum of their heights is hence at most tl -t- t2, so it is less than hi + h2. 
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CASE 2: The bottom twist is nonzero but the top twist is zero. 

H E D 

X\\\\\I k\\\\~ ~ '  

In this case the same vertical cylinder is to the right of A and H. If the vertical 

separatrix going down from H ends in B, there is only one vertical cylinder (one 

horizontal cylinder for the rotated surface RS); if not, it necessarily crosses the 

shaded region to the right of B, so there are two vertical cylinders, and the sum 

of their heights is at most t2 (the twist of the bottom cylinder of S), hence less 

than the height of the bottom cylinder of S. 

CASE 3: The bottom twist is zero but the top twist is nonzero. 

/ 

Act by R; this rotates S by ~r/2. The rotated surface R .  S has two cylinders: 

a top cylinder, corresponding to the side part of S (shaded on the figure), with 

twist 0, and a bottom cylinder of height at most tl,  which we assumed to be 

less than hi. The surface in the same cusp with least nonnegative twists also 

has top twist 0, so if it has bottom twist 0, conclude by case 4, otherwise apply 

case 2 to obtain a surface of height less than hi. 

CASE 4: The twist parameters are both zero. In this case we end the induction 

by jumping to a one-cylinder surface directly: 

LEMMA 5.3: The diagonal direction for the "base rectangle" of an L surface 

tiled by a prime number of squares is a one-cylinder direction. 

G F G .  gl . F  

" " / ' / /  <.'S',:; ~ ~ 1 ~  2 
A B C A- -/3 -C 
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Proo~ The ascending diagonal [AE] of the base rectangle of our L surface cuts 

it into two zones. Note that  [AE] has no other integer point than A and E by 

(P) of w 

The other two saddle connections parallel to [AE] start from B and H and 

end in F and D. We want to prove that  the one starting from H ends in F and 

the one issued from B ends in D, meaning each saddle connection returns with 

angle 37r. 

Set the origin in A or E and consider coordinates modulo ~lZ x h2Z. 

Follow a saddle connection parallel to [AE] from integer point to integer point. 

While it winds in a same zone, the coordinates of the integer points it reaches 

remain constant modulo g~Z x h2Z. Changing zone has the following effects for 

the coordinates of the next integer point: 

�9 from the upper to the lower zone: decrease y by hi modulo h2; 

�9 from the lower to the upper zone: decrease x by ~2 modulo el. 

Zone changes have to be alternated. Once inside a zone with the right coor- 

dinates modulo ~1Z • h2Z, a separatrix reaches the top right corner of the zone 

with no more zone change. 

So we want to prove that  starting from B, in the lower zone with coordinates 

(0,0), and adding in turn (-~2,0) and ( 0 , - h i ) ,  coordinates (g2,0) (point D) 

will be reached before (0, hi) (point H). 

After k changes from lower to upper zone and k changes from upper to lower 

zone, tim coordinates are final if k _ - 1  [~1] and k = 0 [h2]; that  is, if k is 

h2(el - 1). After k + 1 changes from lower to upper zone and k changes from 

upper to lower zone, the coordinates are final if k - 0 [ell and k _~ 0 [h2], which 

means k is h2 �9 gl. So the separatrix parallel to [AE] starting fi'om B reaches 

D. II 

5.3.  LINKING ONE-CYLINDER SURFACES OF EACH TYPE. We  call  a surface 

type A (resp. B) if it has 1 (resp. 3) integer Weierstrass points. 

Recall that  a primitive one-cylinder surface in 7/(2) has height one, hence it 

is determined by the cyclically ordered lengths of the three saddle connections 

on the bottom of this cylinder (which add up to n), and by a twist parameter. 

The repeated action of U can set the twist parameter to any of its n possible 

values, so for the purpose of linking surfaces of the same type by SL(2, Z) action, 

we may already consider surfaces with the same cyclically ordered partition 

(a, b, c) as equivalent (allowing implicit U-action). We will call them (a, b, c) 

surfaces. 
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Partit ions into three odd numbers correspond to type A; partitions into two 

even numbers and one odd number correspond to type B. 

We will first show that  any one-cylinder surface has a (1, *, , )  surface in its 

orbit; then we will show that  (1, b, c) surfaces with b and c odd are in the orbit 

of a (1, 1, n - 2) surface, proving all type A surfaces to be in one orbit; then that 

(1, 2a, 2b) surfaces are in the orbit of a (1, 2, n - 3) surface, proving all type B 

surfaces to be in one orbit. 

Consider a rational-slope direction on a square-tiled surface S; this direction 

is completely periodic. Say it is given by a vector (p, q) C Z 2, with p A q = 1. 
u 

For any (u,v) E Z ~ such that  de t (~  v) = 1 our surface can be seen as tiled 

by parallelograms of sides (p, q), (u,v), whose vertices are the vertices of the 

square tiling. 
u - -1  

These parallelograms are taken to unit squares by M = ( p v) E SL(2, Z). 
q 

We call M �9 S "the surface seen in direction (p, q)" on S. 

Consider a saddle connection a on S in direction (p,q); the corresponding 

saddle connection on M �9 S is horizontal with an integer length equal to the 

number of integer points (vertices of the square tiling) a reaches on S. Abusing 

vocabulary we also call this the length of a. 

A saddle connection returns at an angle of 3 r  if and only if it has a Weierstrass 

point in its middle. If two saddle connections in a given direction return with 

angle 3~r then so does the third, and that  direction is one-cylinder; thus two 

saddle connection lengths give the third. 

5.3.1. First step: any one-cylinder 

surface has a (1, , ,  . )  surface in its 
orbit. To show this, we prove that  

an (a, b, c) surface has a (5, kS, 7) sur- 

b a c 

a b c 

face in its orbit, where 51a A b. Then because n is prime we have 7 A 5 = 1, 

hence applying the argument a second time with 7 and 5 in place of a and b 

shows that  there is a (1, , ,  , )  one-cylinder surface in the orbit of the surface we 

started with. 

The proof is as follows. Consider the (a, b, c) sur- 

face S having saddle connections of lengths a, b, c 

on the bottom, b, a, c on the top. 

R S  has two cylinders, the top one of height c and 

width 1, and the bot tom one of height d = a A b and / /L/ /  J 

width ~d--~, and some twist t. / / / /  / 
Now the direction (1 + t,d) is a (5, k5,7) one- 
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cylinder direction with (~ = (1 + t )  Ad.  Note that k = - ~ -  1, and that  

7 A 5 = 1 .  

So by applying this procedure twice we see that  any surface has a (1, , ,  ,) 

one-cylinder surface in its orbit. 

5.3.2. End of proof for type A surfaces. There only remains to link any (1, b, c) 

surface, where b and c are odd, to a (1, 1,n - 2) surface. 

Consider the L surface with arms of width 

1 and lengths b and c. 

Apply U 2 to set the bottom twist to 2. b 

Then rotate by applying R, and obtain a 

surface with two cylinders of height 1. By 1 

applying a convenient power of U the twists 

can be made both 0. 

In the diagonal direction of the base rectangle of 

this new L surface, we see a (1, 1,n - 2) surface. 

5.3.3. End of proof for type B surfaces. Here 

we take the one-cylinder surface with the partition 

1 c 

b 
j f j f q  " - - ~  

(1, 2, n -  3) as the reference surface, and prove by steps that  any type B surface 

has it in its orbit. 

To do this, we first show that  any one-cylinder surface has a one-cylinder 

surface with a (1,2a,2b) partition in its orbit. This is done by the first step 
explained above. 

Then we link 

�9 (1,2a,2b) where a r b with (d, 2d, . ) ,  then with (1,2,n - 3); 

�9 (1, 2a, 25) where a = b with (2, 2, n - 4), then with (1, 2, n - 3). 

�9 Linking (1,2a,2b) with (1,2,*) when a r b. 

Without loss of generality, suppose a < b. Consider the one-cylinder surface 

with saddle connections of lengths 2a, 2b, 1 on the bottom and 2b, 2a, 1 on the 

top. 

2b 2a 1 

2a 2b 1 

In tile direction (b-a, 1) there is a connection between two integer Weierstrass 

points, so in this direction we see a two-cylinder surface. Its top cylinder has 

height 2a and width 2 and its bottom cylinder has height 1 and with 2 + ~ for 
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some g. 

/ 
2a / 

/ 
F / 

/ 
/ /  - -  

- - 7  
/ / 

/ 
/ 

/ 

E D 

e c X 

v 

/ 
/ 

In certain directions, the separatrix issued from H winds around the horizon- 

tal cylinder HEGF. In particular, in any direction (k, a), k E N, it will run 

into a Weierstrass point (and into a saddle after twice the distance). 

Likewise, in appropriate directions, the separatrix issued from B winds around 

the vertical cylinder BCDE. In particular, in any direction (g/2, k/2) (equiva- 

lently g, k), k E N, it will run into a Weierstrass point (and into a saddle after 

twice the distance). 

Consider therefore the direction (g, a). In this direction we get a (d, 2d, .)  

one-cylinder surface, where d = a A g. 

Now there only remains to link (d, 2d, *) with (1, 2, .) ,  which is easily done: 

consider the one-cylinder surface with saddle connections d, 2d, c on the bottom 

and 2d, d, c on the top; 

2d d c 

d 2d c 

in the (d, 1) direction we get a (1, 2, *) one-cylinder surface. 

�9 Linking (1, 2a, 2b) with (1, 2, *) when a = b. 

Consider the one-cylinder surface with saddle connections of length 2a, 2b, c 

on the bottom and 2b, 2a, c on the top. 

2b 2a c 

I I I I 
2a 2b c 
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In the direction (a, 1) we see a (2, 2, ,) one-cylinder surface. 

I l I h I h l l l L k I  

On this surface, in the direction (2, 1), we have a two-cylinder surface with 

its top cylinder of height 2 and width 1, and its bottom cylinder of height 1. 

Acting by U we can set the twist parameters to 0. 

Then in the direction (1, 1) we see a (1, 2, n - 3) one-cylinder surface. 

5.4. L-SHAPED BILLIARDS. L-shaped billiards give rise to L-shaped trans- 

lation surfaces by an unfolding process; any L-shaped translation (with zero 

twists) surface is the covering translation surface of an L-shaped billiard. 

I I I L I I L I I I  

 lJll,,t,lI 
Fix some prime n > 3, and consider the two- 

cylinder surfaces $1 and $2, both having h2 = 

1, wl = 1 and tl = t2 = 0, and $1 having 

hi = 1, w2 = n - 1  and $2 having h2 = 2, 

w2 = n - 2. The picture on the side represents 

$1 and $2 for n = 13. 

For each n, $1 and $2 belong to orbit A and B respectively, and arise from 

L-shaped billiards. This proves Proposition 1.3. 

6. P r o o f  of  results  about  elliptic points  

Some constructions in this section are inspired by [Ve95]. 

6.1. TRANSLATIONS. Here we prove Proposition 4.4. 

Suppose a surface S E 7/(2) has a nontrivial translation f in its afilne group, f 

fixes the saddle and induces a permutation on outgoing horizontal separatrices. 

Let e be smaller than the length of the shortest saddle connection of S, and 

consider the three points at distance e from the saddle on the three separatrices 

in a given direction, f cannot fix any of these points, otherwise it would be 

the identity of S, but it fixes the set of these points, hence it induces a cyclic 

permutation on them. This implies that  except for the saddle, which is fixed, 

all f-orbits have size 3. However, the set of regular Weierstrass points is also 
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fixed (since the translation f is an automorphism of the underlying Riemann 

surface), and has size 5. This is a contradiction. 

6.2. ELLIPTIC POINTS OF ORDER 3. Here we prove Proposition 4.5. 

Suppose a surface S in 7/(2) has an elliptic element of projective order three 

in its Veech group. Since the hyperelliptic involution has order 2, S has in fact 

an elliptic element of order 6 in its Veech group. Conjugate by SL(2, R) to a 

surface that has the rotation by ~r/3 (hereafter denoted by r) in its Veech group. 

Considering Proposition 4.4, we denote by r the corresponding affine diffeo- 

morphism. 

The set of Weierstrass points is preserved by r. The saddle being fixed, the 

remaining five Weierstrass points are setwise fixed, so at least two of them are 

also fixed. Consider one Weierstrass point that is fixed; call it W. Consider the 

shortest saddle connections through W. They come by triples making angles 

7r/3. 

Take one such triple; consider the corresponding regular hexagon (which has 

these saddle connections as its diagonals). 

We can take this hexagon as a building block for a polygonal fundamental 

domain of the surface. Consider a pair of opposite sides of this hexagon; they 

cannot be identified, since the rotational symmetry would imply other identifi- 

cations and mean we have a torus. 

Hence, these sides and the diagonal parallel to them are three saddle connec- 

tions in the same direction. So this is a completely periodic direction, and we 

want to see two cylinders in this direction. This would imply identifying two 

opposite sides, which we have excluded. 

6.3. ELLIPTIC ELEMENTS OF ORDER 2. 

6.3.1. Proof of Lemma 4.6. Here, inspired by [Ve95], we give a convenient 

representation for R-invariant Veech surfaces in 7/(2): a fundamental octagon 

which is R-invariant. Consider a Veech surface in 7/(2) that has R in its Veech 

group; denote also by R the corresponding affine diffeomorphism. 

The set of Weierstrass points is fixed by R (as by any affine diffeomorphism). 

The saddle being fixed, at least one of the remaining 5 Weierstrass points must 

be fixed. 

Consider such a point and the shortest saddle connections through this point. 

They come by orthogonal pairs. Take one such pair. Consider the square having 

this pair of saddle connections as diagonals. Without loss of generality, consider 

the sides of the square as horizontal and vertical. 
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This square is the central piece of our fundamental domain. Other than the 

corners (the saddle) and the center, there is no Weierstrass point inside this 

square or on its edges. 

Consider the horizontal sides of our square. These sides are saddle connections 

so they define a completely periodic direction on the surface. 

These sides are not identified, otherwise by R-symmetry the other two would 

also be and we would have a torus. So this is a two-cylinder direction and our 

two sides bound the short cylinder in this direction. This short cylinder lies 

outside the square and can be represented as a parallelogram with its "top-left" 

corner in the vertical strip defined by the square (i.e. with a "reasonable" twist). 

By R-symmetry there also is such a parallelogram in the other direction. 

To make the picture more symmetric each parallelogram can be cut into two 

triangles, glued to opposite sides of the square. Thus we get a representation of 

the surface as an octagon with (parallel) opposite sides identified. Note that  the 

four remaining Weierstrass points are the middle of the sides of this octagon. 

6.3.2. Proof  of Proposition 4.7. Represent the surface as above: an octagon 

made of a square and four triangles glued to its sides. All vertices lie on integer 

points. 

Let A B C  be one of the triangles, labeled clock- 

wise so that  A C  is a side of the square. 

Let (p, q) be the coordinates of A-~ and (r, s) 

those of A---~. The area of the surface is then 
p2 + q2 + 2(ps - qr). 

If n is prime then p and q have to be relatively 

prime, and of different parity. Then p2 + q2 

1 [4]. The center of the square lies at the center 

of a square of the tiling. The condition for two 

C 

f 

Weierstrass points to lie on integer points is for (ps - rq) to be even. 

We conclude by observing that  n is 1 (resp. 3) modulo 4 when (ps - rq) is 

even (resp. odd). 

7. Proof  of countings 

Here we establish the countings and estimates of Proposition 4.8. 

7.1. ONE-CYLINDER CUSPS AND SURFACES. For prime n > 3, one-cylinder 

n-square-tiled cusps in 7-/(2) are in 1-1 correspondence with cyclically ordered 

3-partitions of n. 
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Ordered 3-partitions (a,b,c) of n are in 1-1 correspondence with pairs of 

distinct integers {a,/3} in {1 , . . . ,  n -  1}: assuming (~ </3, the correspondence 

is given by a = a, a + b  = fl, a + b + c  = n. So there are Cn2_1 ordered 

3-partitions of n. Ordered 3-partitions of n being in 3-1 correspondence with 
1 2 cyclically ordered 3-partitions, there are ~C~_ 1 = ( n -  1 ) ( n -  2)/6 cyclically 

ordered 3-partitions of n. 

Thus there are (n - 1)(n - 2)/6 one-cylinder cusps of n-square-tiled trans- 

lation surfaces in 7-/(2). 

Those in orbit A are those with 3 odd parts 23 - 1, 2 b -  1, 2 c -  1; these are in 

1-1 correspondence with cyclically ordered partitions a, b, c, of (n + 3)/2. Their 

number is hence 

6 2 2 24 

The remaining ones are in orbit B; their count is hence the difference, 

(n - 1)(n - 3)/8. 

All one-cylinder cusps discussed here have width n (n possible values of the 

twist parameter), so the counts of one-cylinder surfaces are n times the corre- 

sponding cusp counts. 

7.2. TWO-CYLINDER SURFACES. The total number of two-cylinder n-square- 

tiled surfaces (n prime) is 

s(n) : ke, 
a,b,k,g 

where the sum is over a, b, k, g E N* such that  k < g and ak + be = n. 

This follows from the parametrization in w the letters a, b, k, g used here 

correspond to the parameters hi,  h2, w,, w2 there, and the summand is the 

number of possible values of the twist parameters, given the heights and widths 

of the two cylinders. 

We want the asymptotic for this quantity as n tends to infinity, n prime. In 

order to find this, we consider the sum as a double sum: the sum over a and b 

of the sum over k and g. 

Write S(n)  = Ea,b Sa,b(n), where Sa,b(n) = Ek,e kg. 

We study the inner sum by analogy with a payment problem: how many ways 

are there to pay n units with coins worth a and b units? 

This problem is classically solved by the use of generating series: denote the 

number of ways to pay by Sa,b(n); then 

Sa,b(n) = Card{(k, g) E N2:  ak + bg = n} = E 1. 
k,eEN:ak+bg=n 
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Now notice that  Ek~=O z ak Y~=o zbt = ~-~Cr Sa,b(n) zn, and deduce that  the 

number looked for is the n-th coefficient of the power series expansion of the 

function 1 1 
1--Z a 1--z b" 

We turn back to our real problem, Sa,b(n) = Y~k,eEN*:ak+bt=n,k<t ke. 
We want to show that  S(n) ~ cn u for prime n. For this we will use the 

dominated convergence theorem: we show that  Sa,b(n)/n 3 has a limit Ca,b when 

n tends to infinity with a and b fixed, and that  Sa,b(n)/n 3 is bounded by some 

9a,b such that  ~ , b  ga,b <(C<), to conclude that  S (n ) /n 3 = ~ , b  Sa,b (n ) /n3 tends 

to c = ~,~,b Ca,b, which means S(n) ,,, cn 3. 
The dominated convergence is proved as follows. 

Write Sa,b(n) = ~k,heN*:(a+b)k+bh=n k(k+ h) by introducing h = f - k .  Then 

split the sum into ~ k 2 and ~ kh. Write 

s:,~(,~) = Z k~l '~ ~ Z k21 n~, 
k,hEN*, (a+b)k+bh=n kEN*, hEQ, (a+b)k+bh=n 

s"~(~) = Z kh/n~ ~< ~ kh/~ 
k,hEN*, (a+b)k+bh=n kEN*, hEQ, (a+b)k-~bh=n 

(in the sums on the right-hand side, h has been allowed to be a rational instead 

of an integer). Hence 

Ln/(a+b)J 
l [aTb  aTbk)2] ,  

s:b(,~) ~< (a~:b)3 - Z ( - -~ 
k----1 

l [ a : b n / ~ b ' ( a W b k ~ ( l _ a §  
S:'b(n) < (a+b)2~ k=o \ n / n 

The expressions in brackets, Riemann sum approximations to the integrals 

f~ x2dx and fo 1 x(1 - x)dx, are uniformly bounded by 1. 

Now notice that  ~a,b 1 and Ea,b 1 ~ are convergent. This ends the 

dominated convergence argument. 

We can now investigate the limit. For ease of calculation, we drop the condi- 

tion k < f. We take care of it by writing ~k , t  = 2 ~ k < t  + ~k=e" For prime n, 

k = f implies that  they are both equal to 1. The sum for k = e is hence equal 

to n - 1, and we will not need to take it into account since the whole sum will 

grow as n 3. 

Denote by S(n, a, b) the sum over all k and g. 

Notice that  Y~--0 kzak ~ = o  gzb~ = ~ - o  S(n, a, b)z n. 
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S(n, a, b) is therefore the n-th coefficient of the power series expansion of the 

function 
Z a Z b 

fa,b = (1 - - z a )  2 ( 1 - -  zb)  2" 

To determine this coefficient, decompose fa,b into partial fractions. This 

function has poles at a-th and b-th roots of 1. Since n is prime, we are only 

interested in relatively prime a and b, for which the only common root of I is 1 

itself, which is hence a 4-th order pole of fa,b, while other poles have order 2. 

The n-th coefficient of the power series expansion of fa,b is a polynomial 
n3 of degree 3 in n, whose leading term is Ca,by, where c~,b is the coefficient of 

1/(1 - z) 4 in the decomposition of fa,b into partial fractions. This coefficient is 

computed to be 1/a2b 2. 
We want the sum over relatively prime a and b. We relate it to the sum over 

all a and b by sorting the latter according to d = a A b. 

1 1 1 
E a l b 2 - E  E a2b2=~d - ~ E a2b 2" 
a,b d a,b, aAb-~d a,b, aAb=l 

By observing that  

and that  

1 = __  

E a2b 2 a-~ s 3-6 
a,b 

1 7~ 4 

d 

we get that  the s u m  Ea,b, aAb=l 1/a2b2 is equal to 5/2. Divide by 2 to get back 
5 n 3 

to k < g, and find that  S(n) ,- 4 6 �9 

7.3. TWO-CYLINDER SURFACES BY ORBIT. Two-cylinder surfaces for which 

both heights are odd are in orbit A; those for which both widths are odd are in 

orbit B; half of the remaining ones are in orbit A, and half in B; the factor one 

half comes from the conditions on the twists. (See the table in w 

First compute the asymptotic for o d d  heights .  Write 

s~ 
a,b,k , I  

ak ' tbg~n  
a,b *~dd 
a A b : l  

k < t  

Then S~ ,,, 1%h _~ ~S (.,,) where s~ is the same sum without the condition 

k < e. The dominated convergence works as previously. 
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For odd a and b such that a A b = 1, 

,•oh : x E 1 n 3 
a,b~.n) = kg ~ a2b---~.- ~ .  

ak- l -b~=n 

We need to sum over relatively prime odd a and b. Using the same trick as 

previously, write 

1 1 1 1 

E a2b 2= E E a2b2=d~odd- ~ ~ a2b 2" 
a,b odd dodd  ,,.~ odd . . . . .  I 

a A b = d  a A b ~ l  

Now 

and 

SO 

( E  1 / 2  9 " ~ - 4  
E a~lb 2 = j = ((1 - 1/22)r 2 = ~-~ 

a,b odd " aodd  

15 71-4 
E ~ - ~ I  = ( 1 - 1 / 2 4 ) { ( 4 ) = ] - ~ . - - 9 0  

dodd 

1 
E a2b 2 = 3/2. 

a, b odd 
a A b ~ l  

We deduce that S ~ (n) ,,~ 3 n 3 (the condition k < f is responsible for a factor 

1/2). 
Similarly compute the asymptotic for o d d  wid ths .  Write 

s~ 
a ,b , k .~  

a k " [ - b l = n  
k,  s odd  
a A b = l  

k.::~ 

For fixed a and b with a A b = 1, put 

ke. 
ak-[-/~=n 

Notice that E k  odd kzak E ~ o d d  ~zbg "-~ E S~ 
Because ~ kz k = z/(1 - z) 2, ~ 2kz 2k = 2z2/(1 - z2) 2, and the difference is 

E ( 2 k  + 1)z 2k+1 = z(1 + z2)/(1 - z2) 2. 
NOW S~,b(n ) is now the n-th coefficient of the power series expansion of 

z a ( l + z  2a) zb(l+z 2b) 

(1 -- Z2a) 2 (1 -- Z2b) 2 " 
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When a A b = 1, this rational function has two order 4 poles at 1 and - 1  and 

its other poles have order 2; the coefficients of 1/(1 - z) a and 1/(1 + z) 4 in its 

decomposition into partial fractions are respectively 1/4a 2b 2 and ( -  1)a+b/4a 2b 2. 

Because n is odd, and k and e are odd, a and b have to have different parities, 

s o a + b i s o d d .  So 

1 ( - W + f f - 1 )  n 1 

4a2b------- ~ + 4a2b 2 - 2a2b 2 �9 

N o w  
1 

E a2b 2 
a A b = l  
a~b [21 

1 
- E alb 2 E a2b 2 = 5 / 2 - 3 / 2 : 1 "  

aAb----1 a A b ~ l  
a ,b  o d d  

The condition k < e brings a factor 1/2, thus we get S~ --. (1/4)(n3/6). 
The remaining surfaces are those for which heights as welt as widths of the 

cylinders have mixed parities. The asymptotic for this "even-odd"  part is 

computed as the difference between the total sum and the odd-widths and odd- 

heights sums. 
Write S(n) = s~ + S~ + se~ We already know that  

5 n 3 3 n 3 1 n 3 
S(n) ,,, ~ . --~, S~ ~ ~ . --~, and S~ ,,~ ~.--~-. 

So the even-odd part has asymptotics 

1 n 3 

Putt ing pieces together, the number of n-square-tiled two-cylinder surfaces of 

type A, n prime, is equivalent to (3/4 + 1/8)(n3/6) = (7/8)(n3/6). For type B, 

we get (1/4 + 1/8)(n3/6) = (3/8)(n3/6). 

7.4. TWO-CYLINDER CUSPS. For n prime, the number of two-cylinder cusps 

(in both orbits) is given by 

s (n )  = E (aAk)(bA~) 
a,b ,k ,~EN* 

ak"l-b~=n 
k<s 

(see counting of two-cylinder surfaces in w and discussion of cusps in w 

Remark: For nonprime n, the number of two-cylinder cusps is less than S(n) 
defined as above, so the bound found here is still valid. 

S(n) is less than 

S(n)=  E (aAk)(bAe) ,  
a , b , k , l E N *  

ak-~-bl=n 
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where the condition k < ~ is dropped. 

We will show that for any e > 0, S(n) <<n-~oo n 3/2+~. 
This will imply that the number of two-cylinder cusps of n-square-tiled 

surfaces is sub-quadratic, thus negligible before the (quadratic) number of one- 

cylinder cusps in each orbit. 

S(n) = E uvf(A)f(B),  where f(m) = E I. 
A,]l~ ,u,vEN* r s = * ~ z  
Au2+Bv2= n r h a = l  

Note that f(m) <~ d(m) << m ~, where d(m) is tile number of divisors of m. 

The factors f (A)f(B)  therefore contribute less than an n e. 

A,B . . . . . .  e N *  U A < n / u  2 v 2 1 n - A u  2 
Au2,+Bv2=n 

The sum in parentheses has less than d(n - Au 2) summands, each of which 

is bounded by ~ Au ~, so 

<< n 1/2+2  n/u << n 3/2+3  
u 

We thank JoS1 Rivat for contributing this estimate [Ri]. 

7.5. ELLIPTIC POINTS. The discussion in w implies that their number is 

less than the number of integer-coordinate vectors in a quarter of a circle of 

radius v/n, so it is O(n). 

8. S t rong numerica l  evidence 

Martin Schmoll pointed out to us that the number of primitive n-square-tiled 

surfaces in 7/(2) is given in [EsMaSc] to be 

3 2)n2 H ( 1 _ 1  

pin 

By [Mc2], for even n all these surfaces are in the same orbit, and for odd n >/5 

they fall into two orbits. So Eskin, Masur and Schmoll's formula gives the 

cardinality of the single orbit for even n, and the sum of the cardinalities of the 

two orbits for odd n. 
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CONJECTURE 8.1: For odd n, the cardinalities of the orbits are given by the 
following functions: 

orbit A: ~ ( n -  1)r,2 l'-Ipln(1 - pl), 

orbit B: ~ ( n -  3)n2 1-Ipln(1 - ~ ) .  

These formulae give degree 3 polynomials when restricted to prime n, for 

which Theorem 1.2 gives the leading term. These polynomials are expressed in 

the table below. 

one-cylinder two-cylinder all 
A ~x ( n ~ - n )  ~(7nl ~ - 9 n  2 - 7 n + 9 )  a ( n a - n 2 - n + l )  
S 1 3 g(n - 4n2 + 3n) ~(n~-n 'Z -9n+9)  ~6(nZ-3nZ-n+3)  
all 1 3 g(n + 3 n  2+2n)  1 3 . . . .  5~(5n 6n 2 17n + 18) ~ g(n 2n ~ n + 2) 

On the other hand, the counting functions for two-cylinder cusps are not 

polynomials. 

CONJECTURE 8.2: For prime n, the number of elliptic points is [~4-~-J. 

This conjecture is valid for the first thousand odd primes. 

A p p e n d i x  A .  n = 3 a n d  n = 5 

n = 3. For n = 3, we have the following three surfaces. 

If we call S1 the one-cylinder surface, and $2 and $3 

the two-cylinder surfaces, the generators of SL(2, Z) act 

: ~  as follows: USI = S1, US2 = Sj, USj = S2, RSI = Sj, 
RS2 = S2, RS3 = $1. So there is only one orbit, containing d = 3 surfaces, the 

number of cusps is c = 2, the number of elliptic points (R-invariant surfaces) is 

e = 1, so the genus is g = 0 by the Gauss-Bonnet  formula. 

n = 5. For n = 5, we have 27 surfaces forming 8 cusps, a representative of 

which appears on the following picture. 

 Illi 

TTI 

w - - 

ilTli  
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Computing the SL(2, Z) action shows that  they fall into two orbits, orbit A 

being made of the surfaces on the left and orbit B of those on the right. 

The data  for orbit A is d = 18 surfaces, c = 5 cusps, e = 0 elliptic point, so 

the genus is g = 0 by the Gauss-Bonnet formula. 

The data for orbit B is d = 9 surfaces, c = 3 cusps, e = 1 elliptic point, so 

tile genus is g = 0 by the Gauss-Bonnet formula. 

By inspection of the congruence subgroups of genus 0 of SL(2, Z) (see for 

example [CuPa]), the stabilizers of orbits A and B are noncongruence subgroups 

of SL(2, Z). 

A p p e n d i x  B. Hype re l l i p t i c  c o m p o n e n t s  of  o t h e r  s t r a t a  

For all hyperelliptic square-tiled surfaces, one can count the number of Weier- 

strass points with integer coordinates. This provides an invariant for the action 

of SL(2, Z) on square-tiled surfaces in all hyperelliptic components of s trata of 

moduli spaces of abelian differentials. 

The strata with hyperelliptic components are 7/(2g - 2) and 7/(g - 1, g - 1), 

for g > 1. 

PROPOSITION B.I :  In 7/(2g - 2) hyp and 7t(g - 1,g - 1) hyp, for large enough 

odd n there are at least g orbits containing one-cylinder surfaces. 

This is proved by the following reasoning. 

Completely periodic surfaces in 7t(29 - 2) or 7/(9 - 1,g - 1), for g > 1, have 

respectively 2g - 1 and 2g saddle connections. 

For one-cylinder primitive surfaces (necessarily of height 1), the lengths of the 

saddle connections add up to n, and the Weierstrass points are two points on 

the circle at half-height of this cylinder (these do not have integer coordinates), 

the saddle in the 7/(29 - 2) hyp case, and the midpoints of the saddle connections 

that  bound the cylinder (these have integer coordinates for exactly those saddle 

connections of even length). 

If n is odd, the sum of the lengths is odd. So the number of odd-length saddle 

connections has to be odd, and is between 1 and 29 - 1. There are g possibilities 

for that. Since the value of the invariant is the number of even-length saddle 

connections, it can take g different values. 
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Append ix  C. The t heo rem of  Gu tk in  and Judge  

THEOREM (Gutkin-Judge): (S, w) has an arithmetic Veech grotzp if and only 
/ /(S, w) is parallelogram-tiled. 

Up to conjugating by an element of SL(2, R), it suffices to show: 

THEOREM: (S, ~O) is a square-tiled surface/f and only if V(S, w) is commensu- 
rable to SL(2, Z). 

(In other words, these two groups share a common subgroup of finite index in 

each.) 

Remark: In this theorem, the size of the square tiles is not assumed to be 1. 

One can always act by a homothety to make this true, and we will suppose that 

in the proof of the direct way of this theorem. 

C.1. A SQUARE-TILED SURFACE HAS AN ARITHMETIC VEECH GROUP. Con- 

sider a square-tiled surface (S, w), and its lattice of periods A(w). By Lemma 2.3, 

V(S, w) < V(R2/A(w), dz). 

CASE 1: Let us first assume that A(w) = Z 2, i.e. (S,w) is a primitive square- 

tiled surface. 

Lemma 2.4 implies that SL(2, Z) acts on the set E of square-tiled surfaces 

contained in its SL(2, R)-orbit. The set E is finite and the stabilizer of this 

action is V(S, w). The class formula then implies that V(S, w) has finite index 

in SL(2, Z). 

CASE 2: Suppose that A(w) is a strict sublattice of Z 2. Consider P1, .- . ,Pk 

the preimages of the origin on S. Denote by Affp 1 ..... p~ the stabilizer of the set 

of these points in the affine group of (S,w), and V(Pa,... ,Pk) the associated 

Veech group. The translation surface (S,w, {P1,. . . ,  Pk}) where {P1,. . . ,  Pk} 
are artificially marked is a primitive square-tiled surface. From Case 1 above, 

its Veech group V(P1,... ,Pk) is therefore a lattice contained in the discrete 

group V(S, w), hence of finite index in this group. 

Thus V(P1, . . . ,  Pk) is a finite-index subgroup in both V(S, w) and SL(2, Z). 

C.2. A SURFACE WITH AN ARITHMETIC VEECH GROUP IS SQUARE-TILED. 

This part is inspired by ideas of Thurston [Th] and Veech [Ve90, w and ap- 

peared in [Hu, appendix B]. 

Let S be a translation surface with an arithmetic Veech group F. 

If F is commensurable to SL(2, Z) only in the wide sense, we move to the 

case of strict commensurability. This conjugacy on Veech groups is obtained by 

SL(2, R) action on surfaces. 
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We prove the following propositions. 

PROPOSITION C.I: A group F commensurable with SL(2, Z) contains 

elements of the form (lo 1 )  and ( ~ o) for some m, n ~ N*. 

two 

PROPOSITION C.2: If  the Veech group F of a translation surface S contains 
1 m 1 0 two elements of the form (o , ) and (n 1) for soIDe m, ~ C N * ,  then S is 

square-tiled. 

Proposition C.1 follows from the following lemma. 

LEMMA C.3: If  H <_ G is a finite-index subgroup then every g E G of infinite 

order has a power in H. 

Proof of the lemma: If H has finite index there is a partition of G into a 

finite number of classes modulo H. The powers of g, in countable number, are 

distributed in these classes, so there exist distinct integers i and j such that gi 

and gJ are in the same class, and then gj-i  E H. | 

Apply this lemma to G = SL(2, Z) and H the common subgroup to G and F, 
of finite index in b o t h G a n d F ,  a n d g =  (~ 11) o r g - -  (11 0). 

We now prove Proposition C.2. 

Since (1 ~)  e F, the horizontal direction is parabolic, so S decomposes 

into horizontal cylinders C~ ~ of rational moduli. Replacing (~ ~)  with one of 

its powers if necessary, suppose it fixes the boundaries of these cylinders. This 

means their moduli are multiples of 1/m. Calling w~, h h the widths and heights 

of these cylinders, we have relations h h h i /wi  = k J m  for some integers ki. 
By a similar argument, since ( 1 n 0 1 ) E F, the vertical direction is also parabolic, 

and S decomposes into vertical cylinders C)" of rational moduli h~/w; = k~/n 

for some integers k~. 

Combining these two decompositions yields a decomposition of S into rect- 

angles of dimensions h~ • h a (these rectangles are the connected components of 

the intersections of the horizontal and vertical cylinders). Here we keep on with 

the convention of w about heights and widths of cylinders. 

What we want to show is that these rectangles have rational dimensions (up 

to a common real scaling factor), in order to prove that S is a covering of a 

square torus; indeed, if the rectangles are such, then they can be divided into 

equal squares, so we obtain a covering of a square torus. Since singular points 

of S lie on the edges both of horizontal and of vertical cylinders, they are at 

corners of rectangles and hence of squares of the tiling, so that the covering is 

ramified over only one point. 
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Because the cylinders in the decompositions above are made up of these rect- 
v v '  n h h where rrtij, nj i  E N .  angles, we have w h = ~--]~rrtijh~ and wj  = z_~ j~ ~, 

Combining equations, m h  h = ~ k im i jh~  and nh~ = ~ h j n j i h  i h 

Then, setting X h = ,(hll~j, X v = (h~), M = (ki?Ttij)ij, N = (k~nji) j i ,  we 
have m X  h = M X  v and n X  v = N X  h, so that M N X  h = m n X  h and N M X  v = 

n m X  v . 

M, N and their products are matrices with nonnegative integer coefficients. 

In view of applying the Perron-Frobenius theorem, we show that M N  and N M  

have powers with all coefficients positive. 

This results from the connectedness of S and 

the following observation: Mij  ~ 0 if and only 

I I Ch if C~ ~ and C~' intersect; ( M N ) i j  ~ 0 if and only 

if there exists a cylinder C~ which intersects 

I both C h and C~ ~, as in the picture; more gen- 
c h  erally, the element i , j  of a product of alter- 

C~ nately M and N matrices is nonzero if and only 

c h  if there exists a corresponding sequence of al- 
ternately horizontal and vertical cylinders such 

I - that two successive cylinders intersect. So M N  

and N M  do have powers with all coefficients 

C~ ~ positive. 
X h (resp. X v) is an eigenvector for the eigen- 

v v value n m  of the square matrix M N  (resp. 
C k C~ N M ) .  By the Perron-Frobenius theorem, there 

exists a unique eigenvector associated with the real positive eigenvalue n m  for 

the matrix N M  (resp. M N ) .  Since both matrices have rational coefficients and 

the eigenvalue is rational, there exist eigenvectors with rational coefficients. Up 

to scaling, they are unique by the Perron-Frobenius theorem. This allows to 

conclude that X h is a multiple of a vector with rational coordinates. From 

the equation n X  v = N X  h, we then conclude that the rectangles have rational 

moduli and can be tiled by identical squares. This completes the proof of the 

theorem. 

C.3. A COROLLARY. The following result of [GuHuSc] arises as a corollary of 

w and Proposition C.2. 

COROLLARY C.4: I r a  subgroup F < SL(2, Z) contains two elements  (o "~ ) and 

(1 n O) a~d ~as in ,h i re  index  in SL(2, Z),  then F cannot ~e realized as the Veech 

group o f  a translation surface. 
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